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Assuming zero divergence, the equations of forced long waves in a uniformly 
rotating, homogeneous ocean are reduced to a single partial differential equation 
for the stream function. A shelf of exponential slope between a rigid continent 
and a sea of uniform depth is taken as a model, and certain other assumptions are 
made which appear physically reasonable. Calculations made on the basis of this 
simplified theory are in good qualitative agreement with observations of shelf 
waves, indicating that these waves are generated by the stress of the longshore 
component of the geostrophic wind. 

1. Introduction 
Certain recent investigations of the response of sea level to variations in 

weather conditions of periods greater than the pendulum day have been princi- 
pally concerned with the relation between sea level and atmospheric pressure. 
A global survey of monthly mean sea levels (Pattullo, Munk, Revelle & Strong 
1955) found general agreement with the ‘isostatic’ model, in which it is assumed 
that the relation between sea level, atmospheric pressure and water density is 
such that the total pressure at  any fixed point on the bottom in sufficiently deep 
water is constant. Thus, for constant water density, an increase of one millibar in 
atmospheric pressure should produce a decrease of 1.01 cm in sea level. 

Hamon (1962, 1963, 1966) has shown that, for periods of several days, the 
response of sea level at  the Australian coastline to variations in atmospheric 
pressure is consistently smaller (in magnitude) on the east and larger on the west 
coast than that predicted by the isostatic model. Hamon has also investigated 
the lagged correlations of sea level between successive stations. These indicate 
the existence of waves of amplitudes of several centimetres travelling northward 
along the east coast with a velocity of 350 cmlsec and southward along the west 
coast with a velocity between 300 and 600 cmlsec. Mooers & Smith (1967) have 
found similar waves on the west coast of the United States, travelling northward 
with a velocity of 250 cmlsec. Making certain physical assumptions, Robinson 
(1964) constructed a model of continental shelf waves and suggested that the 
waves observed by Hamon were examples of these, the direction and velocity of 
shelf waves being consistent with the observations. In  an extension of this theory, 
Mysak (1967a, b )  proposes that the anomalous behaviour of sea level may be 
explained by the generation of shelf waves in resonance with pressure variations. 
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There are a number of very serious objections, however, to the argument that 
the waves are generated by pressure variations. In  the light of these, it  is neces- 
sary to look for an alternative causal mechanism. It will be shown in this paper 
that the longshore component of the stress of the geostrophic wind can generate 
sufficient vorticity to explain many of the important features of the observations. 
The analysis is only approximate, in that not only are the effects of friction and 
stratification neglected, but also some rather arbitrary assumptions are made 
about the geostrophic wind. Nevertheless, it is our opinion that the resu1t.s in this 
paper give good support to the belief that the geostrophic wind is the main cause 
of the shelf wave phenomenon. 

2. The generation of shelf waves by wind stress 

theory, neglecting bottom friction and internal dissipative forces, are : 
The equations of motion and continuity in the linearized, shallow-water wave 

( 2 . 2 )  

In these equations, u and v are the depth-averaged components of velocity in the 
x ,  y directions respectively, 5 is the elevation of the sea surface above the equi- 
librium level, and r,, ry  are the components of the stress acting on this surface 
due to the geostrophic wind. Also, $ represents the atmospheric pressure 
measured in cm of water, h is the depth, g the acceleration due to gravity and 
f is the Coriolis parameter. Equations (2.1) to (2.3) are expressed in c.g.s. units, 
with the density of water equal to 1 g/cm3. 

To examine the properties of continental shelf waves, consider an infinit,e 
straight coastline parallel to the y-axis and let the depth h be a function of 
x only, that is, all bottom contours are parallel to the coastline. In a previous 
paper (Buchwald & Adams 1968, which will be referred to as paper I) it was shown 
that for the time and length scales of this problem, it is sufficient to assume that 
f is constant, and that the motion is horizontally non-divergent, thereby neg- 
lecting the third term of (2.3). A more cumbersome analysis (Adams 1968) shows 
that the inclusion of this term has a negligible effect on the solution. It is now 
possible to express u, v in terms of a stream function @ by 

where D = h-1. Differentiating (2.1) with respect to y, ( 2 . 2 )  with respect to x ,  
subtracting, and using (2.4), we obtain 
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where the primes represent differentiation with respect to x .  Note that the 
‘isostatic’ model is included in the non-divergent approximation, with c= - q5, 
$ = a constant and r, = ry = 0. 

Following paper I, we consider a shelf profile of the form 

\ = Doe-2bx 
D(x)  \ = Do e-2bl 

(0 < x < Z), 
(x > Z), 

in the ‘shelf’ and ‘ocean’ regions respectively, so that in (2 .5 )  the quantity 
D’/D has a constant value in each region. Assume harmonic variation eiWf (w > 0) 
with time and take Fourier transforms with respect to y, such that 

P m  

( 2 . 7 ~ )  

(2 .7b )  

In  equation (2.5), a/%, a/ay may now be replaced by iw ,  i~ respectively and, using 
(2 .6 ) ,  we obtain the transformed equations 

K 2b 

K 1 
Y‘S-K~YP - - T z - r T h ,  

O - w  zw 

( 2 . 8 ~ )  

(2 .8b )  

where Y(x, K ) ,  T,(x, K ) ,  T,(x, K )  are the Fourier transforms of $, 7,, rv, and the 
subscripts s, 0, refer to the shelf and ocean regions, respectively. It is to be 
understood that eiwt is a factor in all the dependent variables. Following paper I, 
the boundary conditions are that 

Ys=O at x =  0, ( 2 . 9 ~ )  

Ys=Yo, Y ~ = Y ~  at x = l .  (2.9 b )  

For a given wind-stress it is now possible to solve the system of equations (2.81, 
( 2 . 9 ) ,  and hence obtain an expression for the Fourier transform of $. However, 
this expression is rather complicated and inversion of the transform proves to 
be quite difficult. It is, therefore, desirable at  this stage to make some approxima- 
tions which lead to simpler expressions. We make the following assumptions on 
physical grounds: (a)  assume that the shelf-waves are generated by the longshore 
component of the wind stress in the shelf region only. In  general, the horizontal 
dimensions of weather systems are large compared with the shelf width. Now the 
right-hand side of ( 2 . 8 )  consists of the curl of the windstress, and, in the shelf 
region only, a contribution to the vorticity due to the change in depth across the 
shelf. Because of the scales involved, the latter term dominates, and it is, there- 
fore, assumed that we may neglect the right-hand sides of both ( 2 . 8 ~ )  and (2 .8b ) ,  
except for the term 2hT,liw. The same reasoning can be used to justify an assump- 
tion t,hat T, is constant across the width of the shelf. It should be noted that both 
the above assumptions have been tested easily enough in given numerical 
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examples, and were found to be satisfactory; (b)  the observations of shelf waves 
indicate that the wavelengths are large. In  paper I it was shown that for the shelf 
on the east coast of Australia, the theoretical lengths corresponding to periods of 
about 7 days are around 1500 km, and 15 km, and it is suggested that the contri- 
bution from the short waves must be comparatively small. Hence we concentrate 
our attention on the long wave end of the spectrum, and assume that Y(x, K )  is 
very small for 1 K J  < K ~ ,  where K~ < b. This assumption implies that the term in ~2 

may be neglected on the left-hand side of (2 .8a ) ,  and, more important, the 
boundary condition at  x = 1 is Y' = 0. Justification of the latter conclusion is 
given in paper I. 

The result of making assumptions (a)  and ( b )  is to reduce the problem to the 
determination of the amplitudes of the long waves generated on the shelf by the 
longshore component of the wind. If it  can be established that the amplitudes 
and phases of these waves agree qualitatively with the observations, then we have 
obtained a reasonable theoretical explanation. 

After making the approximations, (2 .8 )  and (2 .9 )  reduce to 

Y" - 2bY' + yY = ( 2 b l i ~ )  T,, (2.10) 

for 0 < x < I, where Tv is independent of x, 

y = 2bfK/w, 

and the boundary conditions are 

The solution of (2.10) which satisfies (2.11) is 

Y(x, K )  = A ebzsin$x+ B( 1 - ebz cos$x), 

where $2 = y - b2, 

B = 2 b T , / i ~ y ,  

and B. b cos pl - $ sin $1 
b sin pl-+ $ cos $1 

A =  

J --oo 

(2 .11)  

(2 .12)  

(2 .13)  

(2.14) 

(2 .15)  

(2.16) 

can be obtained for any given T,. 

3. The line wind stress 

Green's function by assuming that 
As a first step in the solution of the problem we calculate the appropriate 

7G(y, 7) = T y ( 7 )  6(!/-r), 
where S(y - q) is the Dirac delta function, so that 

f m  
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and it is assumed that ry is independent of x in the shelf region. Taking the 
transform with respect to y, 

T G ( K ,  7) = ry(7) e-iKq/2n, 

B = br,(q) e-iKv/niwy. so that, in (2 .12) ,  

Y 

I 
FIGURE 1. Intersections of y = tanpl with y = - P / b .  

where /3 is given in (2 .13)  and ~ ~ ( 7 )  is understood to contain the factor eiot. 

(3 .3)  
Now in (2 .2 ) ,  let 

P(Y7 t )  = 5(0, Y7 t )  + 9(07 Y7 t ) ,  

so that p(y, t )  is the 'non-isostatic' part of the sea level observed at the coast, 

P ( K ,  t )  = '1 p ( y ,  t )  e-iuKciy 

be the Fourier transform ofp(y, t ) .  Take the transform of (2 .2)  and let x = 0,  with 
the result that, after some computation, 

and let m 

2n --m 

and (3 .5 )  

62-2 
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The integrand in (3.5) is O(K-~), as K-+CO, and has simple poles on the real axis 
a t  K = 0, and at the roots of 

(3.6) A ( K )  = bsinpl+pcospZ = 0. 

It is easily seen from figure 1 that there is a root p, of (3.6) in each interval 
( n - & ) n < < l  <nn ,  wheren= 1,2 ,3 ,  ..., andthatPnl- t (n-+)n,  asn-too. Let 
K,, y, be the values of K ,  y which correspond to /3 = P7&. 

In Australian latitudes f is negative, and takes a value of about 

f = - 8.3 x 10-6sec-1 

at  latitude 35"s. It is seen from (2.13) that y > 0 for all real p, so that all the 
K, lie on the negative real axis in the complex K plane. There is, therefore, an 
apparent ambiguity in evaluating ( 3 4 ,  and in order to ensure that only outgoing 
waves are obtained, it is convenient to resort to the usual device of assuming 
that 

where B < v. The integral in (3.5) can then be evaluated by residues without 
ambiguity, and the solution for real w is then obtained by allowing E + O .  Now, 
from (3.6) 

w = v - - i B  ( B  > O),  

aP ' d w + - d K  = 0, 
aw aK 

where dw = - ie .  Hence the displacement of the pole at K = K, is given by 

dK = - k K n / W ,  

so that, since K, < 0, all the poles on the negative real axis are displaced into the 
upper half plane. 

The pole a t  K = 0 is somewhat troublesome, in that it occurs on account of the 
non-divergent approximation and has no real physical meaning. If this approxi- 
mation is valid then one would expect only very small contributions from this 
singularity. It will be shown, in fact, that this is so, but, for the sake of mathe- 
matical completeness, we shall include the contribution from this pole along with 
the others in the upper half plane, i.e. we assume that the path of integration in 
(3.6) is below the pole a t  K = 0. Note also that the integrand is an even function 
ofp,  so that there is no singularity a t  p = 0. 

The integral in (3.5) can now be evaluated by completing the path of integra- 
tion by means of a large semi-circle, in the upper half plane for y > 7,  a,nd in the 
lower half plane for y < 7. The contribution of the integral along the semi-circles 
is vanishingly small by Jordan's lemma, so that the integrals in (3.5) can be 
replaced by 2n-i times the sum of the residues at  the poles in the appropriate half 
plane, with the result that 

(3.7) 

Cto  = D,/D,, CC, = 2Wz,6:/bfK,(2fiK,, + 13). (3.8) 

1 m 

gPG(Y,t,V) = D07,(7) [%+ C aneiKn('-lr' H(y-71,  
'It= 1 

where H ( y - 7 )  is the Heaviside unit function, and 

For the shelf on the east coast typical values of the parameters assumed in 
cm-l, D, = 2 x 10W em-l, bl = 2.7, whence paper I are I = 80 km, Do = 4.4 x 
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a. = 4.5 x 10-3, to two significant figures. Calculated values of p,l, ~ ~ 1 ,  and a, 
are given in table 1, to two significant figures, for the first three modes, in the 
case f / w  = 7. 

4. The wind stress model 
On the average, the weather features in Australia consist of a series of anti- 

cyclones, travelling from west to east across the continent. Suppose we represent 
these by a pressure distribution of the form 

(4.1) = @(y) ei(az+wt) 

Mode P 1 L  2 K d  a, 
1 2.4 - 0.35 0.26 
2 5.2 - 0.9 0.24 
3 8.2 - 2.2  0.10 

TABLE 1.  Approximate values of the wave-number and coefficient a, for 
the first three modes. 

where, in the local co-ordinate system used in this paper, a > 0 on the west coast 
and a < 0 on the east coast. It follows that the isostatic response observed at  the 
coast is of the form, (taking the real part), 

= - @(y) coswt. (4-2) 

The geostrophic part of the longshore component of the wind is given by 

(4.3) 
W = A- w = h l a l c D ( y ) i ( a x + w t + ~ ~ s g n a ) ,  

ax 

so that the wind leads the pressure by a phase angle of &r on the east coast, and 
trails by the same amount on the east coast. In (4.3), h is a constant which need 
not be determined here. 

It is beyond the scope of this paper to attempt to find a relationship between 
W and the corresponding wind stress, but in view of (4.3) and assumptions dis- 
cussed earlier in this paper, it is reasonable to take for a model of the y-component 
of the wind stress 

where 6 = 1 on the west coast, 6 = - 1 on the east coast, and ~ ( y )  is some appro- 
priate positive function which gives an estimate of the stress for a given geo- 
strophic wind. Now suppose that ~ ( y )  can be represented by the rectangular 
function 

72/ = ~ ( y )  ei(wl+W), (4.4) 

T(Y) = 0- (0 < Y < L), (4.5) I: ::::;. 1 
In order to obtain an estimate of cr we use the experimental law 

cr. = cp, U2dynes/cm2, 
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where pa is the density of air (taken as 1.25 x lO-3g ~ m - ~ ) ,  U is the speed of the 
wind in cm/sec, and a moderate estimate for c is c = 1.5 x Thus for a sup- 
posed geostrophic wind of amplitude 7 m/sec, u = 0.9 dynes/cm2, approximately, 
and this seems to be a reasonable estimate of the amplitude of the longshore 
component of the stress of the geostrophic wind. 

Note that in (4.5), L is of the order of the dimensions of the weather systems, 
so that L > lOscm, probably. Observations are generally made in the region 
0 < y < L, but, as will be seen later on, the region y > L is also of some theoretical 
and experimental interest. 

The actual displacement at  the shore, p(y, t ) ,  as defined in (3.3)) is now obtained 
by performing the integration 

m 

P(Y9 t )  = J P d Y ,  t ,  7) d% (4.6) 
--m 

where p,(y,t,y) is given by (3.7) and (4.5). It is convenient to discuss two 
separate cases. 

In this case (4.6) reduces to 
Case (a): 0 < y < L 

In the units used so far L = 121, or thereabouts, so that y < 121. Now 

I a l l K l a O I  = 160, 
whence we may conclude that the effects of taking zero divergence are negligible 
for most values of y, and the term in a, can be ignored. It is also evident from 
table 1 that the  second mode has about one-third the amplitude of the first mode, 
and that the third and higher modes have amplitudes which are small enough 
to be neglected. 

Concentrating attention on the first mode, and taking the real part, 

There are a number of conclusions which can be reached from (4.8), and these are 
listed below. (i) The maximum amplitude reached by the first mode is 
[2aDOal/~,gl, which, for the parameters assumed for the east coast, is 6cm, to 
the nearest em. This is of the same order of magnitude as Hamon's (1966) observa- 
tions on the east coast. On the west coast 1 z 16Okm, and, assuming similar 
geometry for the shelf profile, so that the value of bl remains about 2.5, the 
expected amplitude of shelf waves is roughly doubled. Again this is in agreement 
with observations of the barometer factor at Premantle. (ii) Noting that 
K~ < 0 in the southern hemisphere, and 6 = T 1 on the east and west coasts 
respectively, we see that p1 is positive in the east and negative in the west. This 
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is in accord with the observations. In  other words, the difference in phase of the 
observations of shelf waves is due to the fact that anticyclonic weather systems 
approach the west coast from the ocean, and the east coast from the land, so that 
a 'positive' geostrophic wind precedes the pressure in the east, but lags in the 
west. (iii) The maximum amplitude is reached when y = n/K1, that is, at  a distance 
of about 700 km from y = 0,  and an amplitude of about 3 em is reached at  a 
distance of about 250 km. (iv) It can be shown that calculations of velocity from 
observations by the phase lag method yield results which depend on the wind- 
stress profile. Suppose observations are made at  two stations with co-ordinates 
y, y + Y ,  then, in principle, the method is to compute, from the observations, the 
stationary values of 

with respect to the variable T .  The observations are made over many periods, 
so that A % 2n/w. If we now substitute the second of (4.8) into the above expres- 
sion, and carry out the integration with respect to t, we have 

where ,u = wT + q ( y + + Y ) .  Since A 9 2n/w, has a maximum when 
wT + Y = 0, i.e. when Y/T = - ~ w / K ' .  Thus, for the stress profile assumed in 
this paper, an analysis of the observations by the phase lag method would give 
a phase velocity of - 2w/K1 M 540 cm/sec, although the wave velocity of free shelf 
waves is about 270 cmlsec. The reason for the apparent discrepancy is that there 
is interference between the generated and propagating waves in the region where 
the waves are being actually generated. The phase lags calculated by Hamon 
(1966) for the east coast indicate that the observed velocity of shelf waves is 
about 350-400 cmlsec. 

The theoretical phase velocity is very dependent on the form of the function 
7Jy),  and the step function chosen in this paper is not very realistic physically. 
It is, however, possible to reach the very important conclusion that not too much 
significance can be attached to observations of the velocity of shelf waves, at  
least not until the shape of the function 7Jy) is known with reasonable accuracy. 

Case ( b ) :  y > L 

This is a region in which the geostrophic wind can be neglected, but into which 
free shelf waves are propagating from outside. The integral (4.6) now reduces to 

Taking the real part, the expression which corresponds to (4.8) in this region is 

(4.10) 
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for the first mode. This is a wave travelling with speed - w / K l  which is about 
270 cmlsec northwards on the east coast of Australia. 

5. Discussion 
In view of the remarkable correlation between atmospheric pressure and sea 

level which was observed by Hamon (1966, figure 2), it is reasonable to con- 
jecture that shelf waves are generated by pressure fluctuations. However, it may 
be seen that the zero-divergence assumptions leads to an equation (2 .5)  in which 
the forcing terms due to pressure are absent. In  other words, these forcing terms 
are found to contain as a factor the small parameter f2L2/gh, which, in this 
context, is about 5 x Thus one would expect that shelf waves forced by 
pressure variations would have amplitudes which are about two orders of magni- 
tude too small to offer an explanation of the observations. This is not surprising 
physically, because vorticity is a dominant feature of shelf waves, and one would 
not expect pressure fluctuations to be a very efficient way of generating vorticity. 
Actual numerical confirmation of this argument was obtained by one of the 
authors (Adams 1967), who showed that, for reasonable assumptions regarding 
pressure fluctuation, the resultant displacement of sea level is not significantly 
different from that predicted by the isostatic theory. 

There have been two attempts to develop a theory in which the shelf is in 
resonance with atmospheric pressure, thus increasing the magnitudes of the 
result,ing displacements. In  his original paper, Robinson (1964) assumes a coast- 
line of infinite length, and a pressure forcing term of the form g5 = 2g50 cosay cos wt. 
For a given w, there is resonance when a = K,, where K, = w,/c and c is the speed 
of shelf waves. The resulting displacements for a frictionless theory are, of course, 
infinite, and Robinson suggested that a reasonable model including friction, could 
well explain the observations. 

It is desirable at  this stage to determine the physical basis of this kind of 
resonance. The forcing term can be written as 

g5 = g50 cos (ay + w,t)  + $0 cos (ay - w,t)  

and obviously, when a = K,, the first term matches shelf waves in speed and 
direction. Now suppose a disturbance is generated at  y = 0 at  t = 0,  then by 
time t = 2n/w, it will have travelled a distance y = 277/~, and will then reinforce 
the waves being currently generated. Thus all the waves travelling from y = - co 
will reinforce and infinite amplitudes result. Clearly, this type of resonance is 
significant only if the waves can travel for a sufficient number of wavelengths 
within the forcing region so that significant reinforcement can take place. Now 
i t  has been shown that the relevant wavelengths are about 2000 km, and the 
relevant Australian coastlines are hardly longer than this. An equally important 
limitation is that weather systems have widths which are not much greater than 
the wavelength so that even in America it is quite impossible to find a coast where 
pressure and shelf wave can remain in phase long enough to give sufficient 
reinforcement. Mysak (1967 b )  has generalized Robinson’s theory, but an infinite 
coastline is still needed to give the required resonance. 
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More recently, Mysak ( 1 9 6 7 ~ )  has proposed a model consisting of a narrow 
shelf on a circular continent. In  this case resonance can be expected at certain 
frequencies corresponding to the reinforcement of waves after travelling around 
the circumference of the circle. Whilst this is a mathematically sound theory, it 
is difficult to see how it can be used to explain the observations for the following 
reasons. (i) The shelf is not continuous, since both Tasmania and New Guinea 
offer impenetrable obstacles to the propagation of shelf waves. This is supported 
by the fact that observations of sea level at Hobart do not depart significantly 
from the isostatic value, and the regression coefficient at Eden is much nearer 
the ‘expected’ value - 1, than those observed further north. (ii) At a speed of 
350 cm/sec shelf waves would take some weeks to complete the circumference of 
Australia, and by then they would suffer sufficient decay due to friction to 
preclude reasonable reinforcement. In actual fact, Mysak assumed a very low 
friction coefficient to obtain reasonable amplitudes at  resonant frequencies. 
(iii) It is difficult to see how a resonance theory can explain both the existence of 
the broad peak in the frequency spectrum and the opposite phases of the waves 
on the east and west coasts. 

The question of the generation of shelf waves by wind was raised by Hamon 
(1966) who showed that the ‘set up’ due to the geostrophic wind on a shelf of 
width 50 km and uniform depth 100 m is an order of magnitude too small. How- 
ever, a sloping shelf is quite a different matter, because for barotropic motion the 
stress of a wind parallel to the shelf is quite an efficient way of generating the 
necessary vorticity. 

The theoretical results in this paper give considerable qualitative support to 
the theory that the longshore component of the geostrophic wind accounts for 
the observed shelf waves. Many of the features which appear in table 1 in Hamon’s 
(1966) paper can be given a reasonable explanation. For instance, the compara- 
tively larger displacements on the west coast are explained by the wider shelf, 
and the small departure from the isostatic value at  Eden is explained by the fact 
that the waves start only just south of there. Note also that it can be shown that, 
in (4.8), pl(y, t )  is only a slowly varying function of the frequency. This would 
explain why little or no difference can be detected in the regression coefficient 
between summer, when the frequency spectrum has a peak corresponding to a 
period of nine days, and winter, when the peak corresponds to a 5-day period. 

There remains the question of the high correlation between sea level and 
atmospheric pressure. One can only conclude that at  periods in the spectrum of 
between 5 and 9 days, the wind fluctuations are almost entirely due to the 
geostrophic and gradient components, which are, of course, very highly correlated 
with pressure. 

The authors wish to record their gratitude to B. V. Hamon for his constant and 
helpful interest in this work. Thanks are also due to W. H. Munk and M. S. 
Longuet-Higgins for encouraging discussions on the subject. 
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